use columnar::Column;
This example shows how you can implement your own collector. As an example, we will compute a collector that computes the standard deviation of a given fast field.
Of course, you can have a look at the tantivy’s built-in collectors
such as the CountCollector
for more examples.
use columnar::Column;
Importing tantivy…
use tantivy::collector::{Collector, SegmentCollector};
use tantivy::index::SegmentReader;
use tantivy::query::QueryParser;
use tantivy::schema::{Schema, FAST, INDEXED, TEXT};
use tantivy::{doc, Index, IndexWriter, Score};
#[derive(Default)]
struct Stats {
count: usize,
sum: f64,
squared_sum: f64,
}
impl Stats {
pub fn count(&self) -> usize {
self.count
}
pub fn mean(&self) -> f64 {
self.sum / (self.count as f64)
}
fn square_mean(&self) -> f64 {
self.squared_sum / (self.count as f64)
}
pub fn standard_deviation(&self) -> f64 {
let mean = self.mean();
(self.square_mean() - mean * mean).sqrt()
}
fn non_zero_count(self) -> Option<Stats> {
if self.count == 0 {
None
} else {
Some(self)
}
}
}
struct StatsCollector {
field: String,
}
impl StatsCollector {
fn with_field(field: String) -> StatsCollector {
StatsCollector { field }
}
}
impl Collector for StatsCollector {
That’s the type of our result. Our standard deviation will be a float.
type Fruit = Option<Stats>;
type Child = StatsSegmentCollector;
fn for_segment(
&self,
_segment_local_id: u32,
segment_reader: &SegmentReader,
) -> tantivy::Result<StatsSegmentCollector> {
let fast_field_reader = segment_reader.fast_fields().u64(&self.field)?;
Ok(StatsSegmentCollector {
fast_field_reader,
stats: Stats::default(),
})
}
fn requires_scoring(&self) -> bool {
this collector does not care about score.
false
}
fn merge_fruits(&self, segment_stats: Vec<Option<Stats>>) -> tantivy::Result<Option<Stats>> {
let mut stats = Stats::default();
for segment_stats in segment_stats.into_iter().flatten() {
stats.count += segment_stats.count;
stats.sum += segment_stats.sum;
stats.squared_sum += segment_stats.squared_sum;
}
Ok(stats.non_zero_count())
}
}
struct StatsSegmentCollector {
fast_field_reader: Column,
stats: Stats,
}
impl SegmentCollector for StatsSegmentCollector {
type Fruit = Option<Stats>;
fn collect(&mut self, doc: u32, _score: Score) {
Since we know the values are single value, we could call first_or_default_col
on the
column and fetch single values.
for value in self.fast_field_reader.values_for_doc(doc) {
let value = value as f64;
self.stats.count += 1;
self.stats.sum += value;
self.stats.squared_sum += value * value;
}
}
fn harvest(self) -> <Self as SegmentCollector>::Fruit {
self.stats.non_zero_count()
}
}
fn main() -> tantivy::Result<()> {
The Tantivy index requires a very strict schema. The schema declares which fields are in the index, and for each field, its type and “the way it should be indexed”.
first we need to define a schema …
let mut schema_builder = Schema::builder();
We’ll assume a fictional index containing products, and with a name, a description, and a price.
let product_name = schema_builder.add_text_field("name", TEXT);
let product_description = schema_builder.add_text_field("description", TEXT);
let price = schema_builder.add_u64_field("price", INDEXED | FAST);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer: IndexWriter = index.writer(50_000_000)?;
index_writer.add_document(doc!(
product_name => "Super Broom 2000",
product_description => "While it is ok for short distance travel, this broom \
was designed quiditch. It will up your game.",
price => 30_200u64
))?;
index_writer.add_document(doc!(
product_name => "Turbulobroom",
product_description => "You might have heard of this broom before : it is the sponsor of the Wales team.\
You'll enjoy its sharp turns, and rapid acceleration",
price => 29_240u64
))?;
index_writer.add_document(doc!(
product_name => "Broomio",
product_description => "Great value for the price. This broom is a market favorite",
price => 21_240u64
))?;
index_writer.add_document(doc!(
product_name => "Whack a Mole",
product_description => "Prime quality bat.",
price => 5_200u64
))?;
index_writer.commit()?;
let reader = index.reader()?;
let searcher = reader.searcher();
let query_parser = QueryParser::for_index(&index, vec![product_name, product_description]);
here we want to search for broom
and use StatsCollector
on the hits.
let query = query_parser.parse_query("broom")?;
if let Some(stats) =
searcher.search(&query, &StatsCollector::with_field("price".to_string()))?
{
println!("count: {}", stats.count());
println!("mean: {}", stats.mean());
println!("standard deviation: {}", stats.standard_deviation());
}
Ok(())
}